Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
Braz. j. microbiol ; 49(supl.1): 185-192, 2018. tab, graf
Article in English | LILACS | ID: biblio-974316

ABSTRACT

Abstract Biosurfactants have many advantages over synthetic surfactants but have higher production costs. Identifying microorganisms with high production capacities for these molecules and optimizing their growth conditions can reduce cost. The present work aimed to isolate and identify a fungus with high biosurfactant production capacity, optimize its growth conditions in a low cost culture medium, and characterize the chemical structure of the biosurfactant molecule. The fungal strain UFSM-BAS-01 was isolated from soil contaminated with hydrocarbons and identified as Fusarium fujikuroi. To optimize biosurfactant production, a Plackett-Burman design and a central composite rotational design were used. The variables evaluated were pH, incubation period, temperature, agitation and amount of inoculum in a liquid medium containing glucose. The partial structure of the biosurfactant molecule was identified by nuclear magnetic resonance spectrometry. F. fujikuroi reduced surface tension from 72 to 20 mN m−1 under the optimized conditions of pH 5.0, 37 °C and 7 days of incubation with 190 rpm agitation. The partial identification of the structure of the biosurfactant demonstrated the presence of an α,β-trehalose. The present study is the first report of the biosynthesis of this compound by F. fujikuroi, suggesting that the biosurfactant produced belongs to the class of trehalolipids.


Subject(s)
Surface-Active Agents/metabolism , Trehalose/metabolism , Industrial Microbiology/methods , Fusarium/metabolism , Surface-Active Agents/chemistry , Temperature , Culture Media/metabolism , Fermentation , Fusarium/growth & development , Fusarium/chemistry , Hydrogen-Ion Concentration
2.
Electron. j. biotechnol ; 30: 95-102, nov. 2017. tab, graf
Article in English | LILACS | ID: biblio-1021560

ABSTRACT

Background: Dependence on fossil resources, for the production of fuels and energy, has resulted in environmental and financial problems, which require our immediate action in order to reverse the situation. Use of renewable sources for the production of fuels and energy is an important alternative with biodiesel remains as one of the promising options. Aim of this work is to evaluate the fungus Fusarium oxysporum for its potentials to accumulate microbial lipids when grown on synthetic media and saccharified sweet sorghum stalks. Results: The effect of different carbon sources, nitrogen sources and C/N ratio on the lipid production was initially examined, which resulted in a lipid concentration of 4.4 g/L, with lipid content of 42.6% w/w. Sweet sorghum stalks were able to support growth and lipid production of the fungus, both as carbon source and as nitrogen source. It was also shown that saccharification of the dried stalks is an important step to increase lipid production. Removal of the remaining stalk solids enabled the lipid production during cultivation in increased initial solids of up to 16 w/w. This resulted in a lipid production of 3.81 g/L. Conclusions: It was demonstrated that F. oxysporum can be used as an efficient oleaginous microorganism, with sweet sorghum serving as an excellent raw material for the cultivation of the fungus. The lipids obtained during this work were also found to have a fatty acid profile with good potentials to be used for biodiesel production.


Subject(s)
Fusarium/metabolism , Lipids/biosynthesis , Carbon/metabolism , Biomass , Renewable Resources , Fuels , Culture Media , Esters , Lipid Metabolism , Fatty Acids/analysis , Biofuels , Fermentation , Fusarium/chemistry , Hydrolysis , Lipids/analysis , Nitrogen/metabolism
3.
Electron. j. biotechnol ; 29: 86-93, sept. 2017. graf, ilus
Article in English | LILACS | ID: biblio-1017388

ABSTRACT

Background: Although nanoparticles (NPs) have many advantages, it has been proved that they may be absorbed by and have toxic effects on the human body. Recent research has tried to evaluate and compare the nanotoxicity of gold nanoparticles (AuNPs) produced by two types of microorganisms in vitro by two different methods. AuNPs were produced by Bacillus cereus and Fusarium oxysporum, and their production was confirmed by visible spectral, transmission electron microscope, and X-ray diffraction (XRD) analyses. The human fibroblast cell line CIRC-HLF was treated with AuNPs, and the induced nanotoxicity was measured using direct microscopic and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays. Results: The results showed that the produced AuNPs had a maximum absorbance peak around 510­530 nanometer (nm), with spherical, hexagonal, and octagonal shapes and average sizes around 20­50 nm. The XRD results confirmed the presence of GNPs in the microbial culture supernatants. An MTT assay showed that GNPs had dose-dependent toxic effects, and microscopic analysis showed that GNPs induced cell abnormalities in doses lower than the determined half-maximal inhibitory concentrations (IC50s). Conclusions: In conclusion, the biologically produced AuNPs had toxic effects in the cell culture, and direct techniques such as microscopic evaluation instead of indirect methods such as MTT assay were more useful for assessing the nanotoxicity of the biologically produced AuNPs. Thus, the use of only MTT assay for nanotoxicity evaluation of AuNPs is not desirable.


Subject(s)
Nanoparticles/metabolism , Nanoparticles/toxicity , Gold/metabolism , Gold/toxicity , Spectrophotometry , Bacillus cereus/metabolism , Cells, Cultured , Gold Compounds/metabolism , Gold Compounds/toxicity , Toxicity Tests , Surface Plasmon Resonance , Nanotechnology , Microscopy, Electron, Transmission , Metal Nanoparticles/toxicity , Fusarium/metabolism
4.
Electron. j. biotechnol ; 28: 101-112, July. 2017. ilus, graf, tab
Article in English | LILACS | ID: biblio-1015977

ABSTRACT

Background: The hydrolysis of keratin wastes by microorganisms is considered a biotechnological alternative for recycling and valorization through keratinolytic microorganisms. Despite their resistant structure, keratin wastes can be efficiently degraded by various microorganisms through the secretion of keratinases, which are promising enzymes for several applications, including detergents, fertilizers, and leather and textile industry. In an attempt to isolate keratinolytic microorganisms that can reach commercial exploitation as keratinase producers, the current work assesses the dynamics of keratin biodegradation by several keratinolytic fungal strains isolated from soil. The activity of fungal strains to degrade keratin substrates was evaluated by SEM, FTRIR-ATR spectra and TGA analysis. Results: SEM observations offered relevant information on interactions between microorganism and structural elements of hair strands. FTIR spectra of the bands at 1035­1075 cm-1 assigned to sulfoxide bond appeared because of S­S bond breaking, which demonstrated the initiation of keratin biodegradation. According to TGA, in the second zone of thermal denaturation, where keratin degradation occurs, the highest weight loss of 71.10% was obtained for sample incubated with Fusarium sp. 1A. Conclusions: Among the tested strains, Fusarium sp. 1A was the most active organism in the degradation process with the strongest denaturation of polypeptide chains. Because keratinolytic microorganisms and their enzymes keratinases represent a subject of scientific and economic interest because of their capability to hydrolyze keratin, Fusarium sp. 1A was selected for further studies.


Subject(s)
Fungi/enzymology , Fungi/metabolism , Keratins/metabolism , Peptide Hydrolases/metabolism , Thermogravimetry , Trichoderma/metabolism , Trichophyton/metabolism , Biodegradation, Environmental , Microscopy, Electron, Scanning , Cladosporium/metabolism , Spectroscopy, Fourier Transform Infrared , Fusarium/metabolism , Hydrolysis , Keratins/chemistry , Microsporum/metabolism
5.
Braz. j. microbiol ; 47(4): 1000-1005, Oct.-Dec. 2016. tab, graf
Article in English | LILACS | ID: biblio-828197

ABSTRACT

Abstract Wheat is one of the most important cultivated cereals in Uruguay for human consumption; however, when harvest yields are low, wheat is usually used in ensiling for animal feeding. Ensiling is a forage preservation method that allows for storage during extended periods of time while maintaining nutritional values comparable to fresh pastures. Silage is vulnerable to contamination by spoilage molds and mycotoxins because ensilage materials are excellent substrates for fungal growth. The aim of the study was to identify the mycobiota composition and occurrence of aflatoxins and DON from wheat silage. A total of 220 samples of wheat were collected from four farms in the southwest region of Uruguay were silage practices are developed. The main fungi isolated were Fusarium (43%) and Aspergillus (36%), with Fusarium graminearum sensu lato and Aspergillus section Flavi being the most prevalent species. Aflatoxin concentrations in silo bags ranged from 6.1 to 23.3 µg/kg, whereas DON levels ranged between 3000 µg/kg and 12,400 µg/kg. When evaluating aflatoxigenic capacity, 27.5% of Aspergillus section Flavi strains produced AFB1, 5% AFB2, 10% AFG1 and 17.5% AFG2. All isolates of F. graminearum sensu lato produced DON and 15-AcDON. The results from this study contribute to the knowledge of mycobiota and mycotoxins present in wheat silage.


Subject(s)
Animals , Cattle , Aspergillus/metabolism , Silage , Triticum/microbiology , Food Contamination , Fusarium/metabolism , Animal Feed , Mycotoxins , Uruguay , Microbiota , Food Microbiology
6.
Braz. j. microbiol ; 47(3): 775-780, July-Sept. 2016. tab, graf
Article in English | LILACS | ID: lil-788951

ABSTRACT

ABSTRACT Lectins are non-immunogenic carbohydrate-recognizing proteins that bind to glycoproteins, glycolipids, or polysaccharides with high affinity and exhibit remarkable ability to agglutinate erythrocytes and other cells. In the present study, ten Fusarium species previously not explored for lectins were screened for the presence of lectin activity. Mycelial extracts of F. fujikuroi, F. beomiformii, F. begoniae, F. nisikadoi, F. anthophilum, F. incarnatum, and F. tabacinum manifested agglutination of rabbit erythrocytes. Neuraminidase treatment of rabbit erythrocytes increased lectin titers of F. nisikadoi and F. tabacinum extracts, whereas the protease treatment resulted in a significant decline in agglutination by most of the lectins. Results of hapten inhibition studies demonstrated unique carbohydrate specificity of Fusarium lectins toward O-acetyl sialic acids. Activity of the majority of Fusarium lectins exhibited binding affinity to D-ribose, L-fucose, D-glucose, L-arabinose, D-mannitol, D-galactosamine hydrochloride, D-galacturonic acid, N-acetyl-d-galactosamine, N-acetyl-neuraminic acid, 2-deoxy-D-ribose, fetuin, asialofetuin, and bovine submaxillary mucin. Melibiose and N-glycolyl neuraminic acid did not inhibit the activity of any of the Fusarium lectins. Mycelial extracts of F. begoniae, F. nisikadoi, F. anthophilum, and F. incarnatum interacted with most of the carbohydrates tested. F. fujikuroi and F. anthophilum extracts displayed strong interaction with starch. The expression of lectin activity as a function of culture age was investigated. Most species displayed lectin activity on the 7th day of cultivation, and it varied with progressing of culture age.


Subject(s)
Humans , Animals , Mycelium , Fusarium/metabolism , Fusarium/chemistry , Lectins/metabolism , Hemagglutination Tests , Erythrocytes/drug effects , Carbohydrate Metabolism , Fusarium/growth & development , Hemagglutination , Lectins/pharmacology
7.
Braz. j. microbiol ; 46(2): 415-424, Apr-Jun/2015. tab, graf
Article in English | LILACS | ID: lil-749732

ABSTRACT

Dyes are the most difficult constituents to remove by conventional biological wastewater treatment. Colored wastewater is mainly eliminated by physical and chemical procedures, which are very expensive and have drawbacks. Therefore, the advantage of using biological processes, such as the biotransformation of dyes, is that they may lead to complete mineralization or formation of less toxic products. To prove the possibility of using fungal processes for decolorization and other applications, the analysis of the toxicity of the processes' products is required. The decolorization of the mixture of two dyes from different classes - triphenylmethane brilliant green and azo Evans blue (GB - total concentration 0.08 g/L, proportion 1:1 w/w) - by Pleurotus ostreatus (BWPH and MB), Gloeophyllum odoratum (DCa), RWP17 (Polyporus picipes) and Fusarium oxysporum (G1) was studied. Zootoxicity (Daphnia magna) and phytotoxicity (Lemna minor) changes were estimated at the end of the experiment. The mixture of dyes was significantly removed by all the strains that were tested with 96 h of experimental time. However, differences among strains from the same species (P. ostreatus) were noted. Shaking improved the efficacy and rate of the dye removal. In static samples, the removal of the mixture reached more than 51.9% and in shaken samples, more than 79.2%. Tests using the dead biomass of the fungi only adsorbed up to 37% of the dye mixture (strain BWPH), which suggests that the process with the living biomass involves the biotransformation of the dyes. The best results were reached for the MB strain, which removed 90% of the tested mixture under shaking conditions. Regardless of the efficacy of the dye removal, toxicity decreased from class V to class III in tests with D. magna. Tests with L. minor control samples were classified as class IV, and samples with certain strains were non-toxic. The highest phytotoxicity decrease was noted in shaken samples where the elimination of dye mixture was the best.


Subject(s)
Animals , Basidiomycota/growth & development , Basidiomycota/metabolism , Evans Blue/metabolism , Fusarium/growth & development , Fusarium/metabolism , Rosaniline Dyes/metabolism , Wastewater/microbiology , Araceae/drug effects , Araceae/physiology , Biotransformation , Cell Survival/drug effects , Daphnia/drug effects , Daphnia/physiology , Evans Blue/toxicity , Rosaniline Dyes/toxicity , Water Purification/methods
8.
Braz. j. microbiol ; 46(1): 293-299, 05/2015. tab, graf
Article in English | LILACS | ID: lil-748267

ABSTRACT

The effect of fludioxonil + metalaxyl-M on the mycelial morphology, sporulation and fumonisin B1 production by Fusarium verticillioides 103 F was evaluated. Scanning electron microscopy analysis showed that the fungicide caused inhibition of hyphal growth and defects on hyphae morphology such as cell wall disruption, withered hyphae, and excessive septation. In addition, extracellular material around the hyphae was rarely observed in the presence of fludioxonil + metalaxyl-M. While promoting the reduction of mycelial growth, the fungicide increased sporulation of F. verticillioides compared to the control, and the highest production occurred on the 14th day in the treatments and on the 10th day in the control cultures. Fumonisin B1 production in the culture media containing the fungicide (treatment) was detected from the 7th day incubation, whereas in cultures without fungicide (control) it was detected on the 10th day. The highest fumonisin B1 production occurred on the 14th day, both for the control and for the treatment. Fludioxonil + metalaxyl - M can interfere in F. verticillioides mycelial morphology and sporulation and increase fumonisin B1 levels. These data indicate the importance of understanding the effects of fungicide to minimize the occurrence of toxigenic fungi and fumonisins.


Subject(s)
Fumonisins/metabolism , Fungicides, Industrial/pharmacology , Fusarium/drug effects , Fusarium/metabolism , Hyphae/drug effects , Hyphae/ultrastructure , Alanine/analogs & derivatives , Alanine/pharmacology , Dioxoles/pharmacology , Fusarium/growth & development , Fusarium/ultrastructure , Hyphae/growth & development , Microscopy, Electron, Scanning , Pyrroles/pharmacology , Spores, Fungal/growth & development
9.
J. bras. nefrol ; 36(4): 502-511, Oct-Dec/2014. tab, graf
Article in Portuguese | LILACS | ID: lil-731153

ABSTRACT

Introdução: São escassos estudos dos custos dos insumos consumidos em hemodiálise e, dentre estes gastos, os compostos que compõem o dialisato estão entre os valores considerados como representativos nessa terapia. Contudo, não foram encontrados estudos que orientem sobre o comportamento de custos dessas soluções. Objetivo: O objetivo do artigo é avaliar se há desperdício no consumo de soluções alcalinas em hemodiálise ambulatorial e, consequentemente, a possibilidade de redução no custo a partir da simulação de padronização no processo de estabelecimento do fluxo do dialisato nos períodos entre turnos em sessões de hemodiálise ambulatorial. Métodos: Partindo de um estudo observacional analítico, foi realizada uma simulação de 20 cenários, sendo 10 estabelecidos pela padronização dos processos de controle no fluxo do dialisato nos intervalos das sessões. A combinação dos dados foi realizada tomando por base os preços de três fornecedores de soluções alcalinas líquidas ou em pó. Resultados: Observou-se, dentre os cenários com processos padronizados, uma variação entre 7,7% e 33,3% de economia no custo da solução alcalina (em pó ou líquida), pela redução do desperdício. Conclusão: É possível refrear o desperdício no uso de soluções alcalinas, tanto em pó quanto líquidas e, consequentemente, seus custos, a partir da padronização na redução do fluxo de dialisato durante os intervalos verificados entre os turnos na hemodiálise ambulatorial. Todavia, estes resultados estão condicionados ao comprometimento de profissionais de saúde, principalmente no que tange ao exercício da supervisão e controle das atividades ...


Introduction: There are few studies about costs of inputs used in hemodialysis and among these expenditures, the compounds that make up the dialysate are one of the values considered as representative of this therapy. However, there aren’t costs studies that guiding solutions. Objective: The objective of this article is discuss whether there is wasteful of alkaline solutions in ambulatory hemodialysis and hence the possibility of reduction in cost from the standardization process simulation of establishment of dialysate flow in periods between shifts in hemodialysis outpatients. Methods: Starting from an observational analytic, a simulation was performed twenty case scenarios, which ten cases established by standardizing processes control on the dialysate flow in recession. The combination of data was performed using as a basis the prices of three suppliers of alkali liquid or powder. Results: It was observed among the scenarios with standardized processes, ranging between 7.7% and 33.3% savings in the alkaline solution cost (powder or liquid), by reducing waste. Conclusion: It is possible to restrain the wasteful use of alkaline solutions, both powder and liquid. Consequently, its cost from the patterning on reducing the flow of dialysate during the intervals between shifts observed in the outpatient hemodialysis. However, these results are conditional upon the commitment of health professionals, mainly to supervision exercise and control of activities in quality function deployment. .


Subject(s)
Fusarium/metabolism , Gold/metabolism , Chlorides/metabolism , Gold Compounds/metabolism , Intercellular Junctions , Microspheres , Nanotechnology
10.
Mem. Inst. Oswaldo Cruz ; 109(2): 220-228, abr. 2014. tab, graf
Article in English | LILACS | ID: lil-705813

ABSTRACT

The microbial synthesis of nanoparticles is a green chemistry approach that combines nanotechnology and microbial biotechnology. The aim of this study was to obtain silver nanoparticles (SNPs) using aqueous extract from the filamentous fungus Fusarium oxysporum as an alternative to chemical procedures and to evaluate its antifungal activity. SNPs production increased in a concentration-dependent way up to 1 mM silver nitrate until 30 days of reaction. Monodispersed and spherical SNPs were predominantly produced. After 60 days, it was possible to observe degenerated SNPs with in additional needle morphology. The SNPs showed a high antifungal activity against Candida and Cryptococcus , with minimum inhibitory concentration values ≤ 1.68 µg/mL for both genera. Morphological alterations of Cryptococcus neoformans treated with SNPs were observed such as disruption of the cell wall and cytoplasmic membrane and lost of the cytoplasm content. This work revealed that SNPs can be easily produced by F. oxysporum aqueous extracts and may be a feasible, low-cost, environmentally friendly method for generating stable and uniformly sized SNPs. Finally, we have demonstrated that these SNPs are active against pathogenic fungi, such as Candida and Cryptococcus .


Subject(s)
Antifungal Agents/metabolism , Candida/drug effects , Cryptococcus/drug effects , Fusarium/metabolism , Metal Nanoparticles , Silver/metabolism , Antifungal Agents/therapeutic use , Cell Extracts , Candida/classification , Candida/ultrastructure , Cryptococcus/classification , Cryptococcus/ultrastructure , Disk Diffusion Antimicrobial Tests , Growth Inhibitors , Microbial Sensitivity Tests , Microscopy, Atomic Force , Microscopy, Electron, Transmission , Metal Nanoparticles/therapeutic use , Silver/analysis , Silver/therapeutic use
11.
Braz. j. microbiol ; 44(2): 401-406, 2013. ilus, tab
Article in English | LILACS | ID: lil-688577

ABSTRACT

Hundred Fusarium culmorum strains, isolated from freshly harvested maize grain samples from Southern parts of India, were incubated in czapek-dox medium and analyzed for trichothecene (DON/NIV) production. The mPCR assay was standardized targeting trichothecene metabolic pathway genes viz., Tri6, Tri7, Tri13 for detection of trichothecene (DON/NIV) chemotypes and rDNA gene for specific detection of F. culmorum species. Primers for targeted genes were designed and used to predict whether these isolates could produce deoxynivalenol/nivalenol, 94 isolates were able to produce DON/NIV by mPCR assay. Chemical analysis of DON/NIV was carried out for mPCR positive isolates by high performance-thin layer chromatography (HPTLC). To check the practical usefulness of developed mPCR assay, 150 field samples of maize were evaluated and results were compared with conventional HPTLC method. Out of 150 samples, 34% samples stayed as a positive for NIV contamination whereas 44% were found to have deoxynivalenol contamination. Moreover, mPCR results are equivocally matched with the HPTLC chemical analysis for field samples. Chemotyping of F. culmorum isolates were reported for the first time from India, and highlights the important potential of F. culmorum to contaminate maize with DON/NIV.


Subject(s)
Biosynthetic Pathways , Fusarium/genetics , Fusarium/metabolism , Multiplex Polymerase Chain Reaction , Trichothecenes/classification , Trichothecenes/metabolism , Zea mays/microbiology , Chromatography, Thin Layer , Fusarium/isolation & purification , Genotype , Genotyping Techniques , Incidence , India
12.
Braz. j. microbiol ; 44(2): 417-422, 2013. graf, mapas, tab
Article in English | LILACS | ID: lil-688579

ABSTRACT

Twenty six isolates of Fusarium graminearum from grains of maize hybrids harvested in ±west Argentina were grown on autoclaved rice grain to assess their ability to produce type B trichothecenes. Chemical analysis indicated that 38% of isolates were nivalenol (NIV) producers only, 31% were major NIV producers with high DON(deoxynivalenol)/NIV ratios, 8% were major DON producers with minor NIV production, and 23% were DON producers only. Isolates showed a high variability in their toxigenic potential which was not related to fungal biomass. The distribution of the different chemotypes as well as the high and the low trichothecene-producing Fusarium isolates could not be associated to a geographical origin. Our results confirmed for the first time that isolates of Fusarium graminearum from maize of northwest Argentina are able to produce DON and NIV. A substancial contamination with both NIV and DON is likely in maize from northwest Argentina. Their contents should be quantified in regional surveillances for mycotoxin contamination.


Subject(s)
Fusarium/isolation & purification , Fusarium/metabolism , Trichothecenes/metabolism , Zea mays/microbiology , Argentina , Fusarium/growth & development , Oryza/microbiology
13.
Pakistan Journal of Pharmaceutical Sciences. 2010; 23 (3): 349-357
in English | IMEMR | ID: emr-98184

ABSTRACT

Fungi, in particular, are able in common with the higher plants and bacteria, to produce metabolites, including alkaloids. Alkaloids, along with other metabolites are the most important fungal metabolites from pharmaceutical and industrial point of view. Based on this observation, the authors of this review article have tried to provide an information on the alkaloids produced by the species of genera: Boletus, Fusarium and Psilocybef from 1981-2009. Thus the review would be helpful and provides valuable information for the researchers of the same field


Subject(s)
Basidiomycota/metabolism , Psilocybe/metabolism , Fusarium/metabolism
14.
Article in English | IMSEAR | ID: sea-114172

ABSTRACT

37 fungal species were recorded, maximum found in textile wastewater polluted habitats (35) followed by unpolluted (15) and distillery polluted (6) habitats. Fungal diversity in sediment samples of textile wastewater polluted habitats (25) was a little lower than wastewater samples (32), whereas it varied little both in the samples of unpolluted habitats (Sambhar wetlands: 5-6; Garden tanks: 9-10) and distillery waste (3-5). Seasonal variation in species diversity was more pronounced in the textile wastewater polluted habitats. Their minimum number was often found during the rainy season while maximum in the winter season, in the polluted habitats but during summer in the unpolluted habitats. Aspergillus was the most diverse genus represented by 7 species, followed by Cladosporium and Fusarium (3 species each) while Drechslera, Rhizopus and Trichoderma had 2 species each. The remaining genera (18) were monotypic. Colony Forming Units (CFUs) were also maximum in the textile wastewater polluted habitats (5.6-1898.9 x 10(3)/L), followed by unpolluted (6.7-560.0 x 10(3)/L) and distillery waste polluted habitats (3.1-53.3 x 10(3)/L), being usually higher in the sediment samples. Their number also varied seasonally, being maximum during winter season in the water samples, whereas in summer in the sediment samples. Aspergillus fumigatus, A. niger, Cladosporium cladosporioides, C. sphaerospermum and Penicillium chrysogenum usually contributed maximum to the CFU values in the polluted as well as in unpolluted habitats.


Subject(s)
Aspergillus/metabolism , Cladosporium/metabolism , Environment , Environmental Monitoring/methods , Fungi/genetics , Fusarium/metabolism , Industrial Waste , Rhizopus/metabolism , Seasons , Stem Cells , Textiles , Time Factors , Trichoderma/metabolism , Water Microbiology , Water Pollutants/chemistry
15.
Electron. j. biotechnol ; 8(3)Dec. 2005. tab, ilus
Article in English | LILACS | ID: lil-448791

ABSTRACT

Trichoderma harzianum 650 (Th650) and Paenebacillus lentimorbus 629 (Pl629) selected earlier for their ability to control Rhizoctonia solani, Fusarium solani and F. oxysporum in vitro, were applied alone or combined with solarization (summer assay) and/or with methyl bromide (MeBr) (summer and winter assays) to a soil with a high inoculum level, for the control of tomato root rot caused by the complex F. oxysporum f. sp. lycopersici - Pyrenochaeta lycopersici - Rhizoctonia solani. Evaluations were also performed independently for root damage caused by P. lycopersici, and also for R. solani in the summer assay. MeBr decreased tomato root damage caused by the complex from 88.7 percent to 21.2 percent and from 78.4 percent to 35.7 percent in the summer and in the winter assay, respectively. None of the bio-controllers could replace MeBr in the winter assay, but Th650 and Pl629 reduced root damage caused by this complex in the summer assay. Treatments with bio-controllers were improved by their combination with solarization in this season. Independent evaluations showed that the positive control of Th650 towards R. solani and the lack of effect on P. lycopersici correlates well with the endochitinase pattern expressed by Th650 in response to these phytopathogens. Root damage caused by R. solani can be controlled at a similar level as it does MeBr in summer assays, thus representing an alternative to the use of this chemical fungicide for the control of this phytopathogen.


Subject(s)
Antifungal Agents/metabolism , Pest Control, Biological/methods , Fusarium/metabolism , Solanum lycopersicum/microbiology , Rhizoctonia/metabolism , Bacillus/metabolism , Greenhouses , Hydrocarbons, Brominated , Mitosporic Fungi/metabolism , Models, Biological , Plant Roots/microbiology , Seasons , Soil Microbiology , Sunlight , Trichoderma/metabolism
16.
Electron. j. biotechnol ; 7(1): 38-46, Apr. 2004. ilus, tab, graf
Article in English | LILACS | ID: lil-363994

ABSTRACT

The mycelium of Fusarium flocciferum was assayed for its ability to degrade aromatic compounds, namely, gallic, protocatechuic, vanillic, syringic, caffeic, and ferulic acids and syringic aldehyde, commonly found in agro-industrial wastes. The biodegradation assays were performed in liquid medium with the phenolic compounds as single substrates and as a synthetic mixture containing the seven aromatic compounds. The results with single substrates indicated that in 24 hrs of incubation the fungus was able to reduce the phenolic concentration from 200 mg/l to below detection limits, except for syringic acid, being the lowest degradation rates found for this acid and its aldehyde. The biodegradation experiments with the mixture of phenolic compounds showed that after 8 hrs the total phenolic concentration was reduce from 350 mg/l to below the detection limits of all the tested compounds. In all the experiments a rise in the pH and an effective detoxification of the phenolic solutions were also observed.


Subject(s)
Biodegradation, Environmental , Phenols/metabolism , Fusarium/metabolism , Agribusiness , Wastewater Disposal/methods , Hydrogen-Ion Concentration , Fungi/metabolism , Industrial Waste
17.
Rev. microbiol ; 30(2): 104-6, abr.-jun. 1999. tab
Article in Portuguese, English | LILACS | ID: lil-257203

ABSTRACT

Resistance of cucumber plantlets to culture filtrate of Fusarium oxysporum is correlated with resistance of single cells from callus. Single cells and platlets of two cultivars of cucumber were incubated with culture filtrates. Rapid cell death ocurred, as assessed by the stain fluorescein diacetate. More cell death ocurred in the cells of the cultivar Aodai than in to cells of the cultivar Caipira, which presented high level of resistance. Maximum toxic activity of culture filtrates was attained after 21-25 days of growth of the fungus.


Subject(s)
Cucumis sativus/microbiology , Fusarium/metabolism , Cell Death , Fusarium/growth & development
18.
Braz. j. med. biol. res ; 29(8): 949-55, Aug. 1996. ilus
Article in English | LILACS | ID: lil-187364

ABSTRACT

Glycine was transported in Fusarium oxysporum cells, grow on glycine as the sole source of carbon and nitrogen, by a facilitated diffusion transport system with a half-saturation constant(Ks) of 11 mM and a maximum velocity (Vmax) of 1.2 mM (g dry weight)-1 h-1 at pH 5.0 and 26 degrees Celsius. Under conditions of nitrogen starvation, the same system was present together with a high-affinity one(Ks) of about 47 muM and Vmax of about 60 muM (g dry weight)(-1) h-1)). The low-affinity system was more specific than the high-affinity system. Cells grown on gelatine showed the same behavior. In cells grown on glucose-gelatine medium, the low-affinity system was poorly expressed even after carbon and nitrogen starvation. Moreover, addition of glucose to cells grown on glycine and resuspended in mineral medium caused an increase of the glycine transport probably due to a boost in protein synthesis. This stimulation did not affect the Ks of the low-affinity system. These results demonstrate that, as is the case for other eukaryotic systems, F.oxysporum glycine transport is under control of nitrogen sources but its regulation by carbon sources appears to be more complex.


Subject(s)
Biological Transport/physiology , Fusarium/metabolism , Glycine/metabolism
19.
Indian J Exp Biol ; 1996 Jan; 34(1): 57-60
Article in English | IMSEAR | ID: sea-60107

ABSTRACT

A crude extract containing some toxic furanoterpenoids was isolated from F. solani infected sweet potatoes. Chronic administration of the crude extract to male albino rats at a dosage of 1 mg/kg body weight/day for 21 days brought about a sharp increase in the thiobarbituric acid reactive substances and a depression of glutathione levels in the lung and liver homogenates. The antioxidant defense system was affected as evident from a significant fall in the activities of the enzymes, superoxide dismutase, catalase, glutathione peroxidase, glucose-6-phosphate dehydrogenase and glutathione-S-transferase. Such an alteration could be the reason for the lung and liver damage caused by these toxic furanoterpenoids.


Subject(s)
Animals , Furans/isolation & purification , Fusarium/metabolism , Liver/drug effects , Lung/drug effects , Male , Mycoses/metabolism , Oxidative Stress/drug effects , Rats , Rats, Wistar , Terpenes/isolation & purification , Vegetables/metabolism
20.
Hindustan Antibiot Bull ; 1995 Feb-Nov; 37(1-4): 9-15
Article in English | IMSEAR | ID: sea-2595

ABSTRACT

Penicillin V acylase from Fusarium sp. SKF 235 culture filtrate was purified to homogeneity. The enzyme was a glycoprotein and composed of single polypeptide chain with molecular weight of 83,200 Daltons. The pH and temperature optima were 6.5 and 55 degrees C, respectively. The KM for penicillin V was 10 mM but the enzyme was inhibited by penicillin V at concentrations above 50 mM. Products of reaction, 6-aminopenicillanic acid and phenoxyacetic acid inhibited the enzyme competitively and noncompetitively with Ki values of 18 mM and 45 mM, respectively. The enzyme specifically hydrolyzed penicillin V, cephalosporanic acid V and penicillin V sulphoxide. Other phenoxy acetyl amides studied were not hydrolysed. It is proposed that phenoxyacetyl moiety alone is not recognized by the penicillin V acylase and in addition, the beta-lactam structure contributes in formation of enzyme-substrate complex.


Subject(s)
Amidohydrolases/analysis , Binding, Competitive , Cephalosporins/metabolism , Culture Media , Electrophoresis, Polyacrylamide Gel , Enzyme Inhibitors/chemical synthesis , Fusarium/metabolism , Hydrogen-Ion Concentration , Hydrolysis , Molecular Weight , Penicillanic Acid/analogs & derivatives , Penicillin Amidase/antagonists & inhibitors , Penicillin V/analogs & derivatives , Phenoxyacetates/chemistry , Substrate Specificity , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL